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MINIREVIEW

Unraveling interactions in microbial communities - 
from co-cultures to microbiomes

Microorganisms do not exist in isolation in the environment. 
Instead, they form complex communities among themselves 
as well as with their hosts. Different forms of interactions not 
only shape the composition of these communities but also de-
fine how these communities are established and maintained. 
The kinds of interaction a bacterium can employ are largely 
encoded in its genome. This allows us to deploy a genome- 
scale modeling approach to understand, and ultimately pre-
dict, the complex and intertwined relationships in which mic-
roorganisms engage. So far, most studies on microbial com-
munities have been focused on synthetic co-cultures and sim-
ple communities. However, recent advances in molecular 
and computational biology now enable bottom up methods 
to be deployed for complex microbial communities from the 
environment to provide insight into the intricate and dy-
namic interactions in which microorganisms are engaged. 
These methods will be applicable for a wide range of micro-
bial communities involved in industrial processes, as well as 
understanding, preserving and reconditioning natural mi-
crobial communities present in soil, water, and the human 
microbiome.

Keywords: synthetic communities, system biology, co-cul-
tures, metabolic models

Introduction

Microorganisms in nature rarely exist in isolation and in-
stead are largely found in complex communities. Despite this, 
most of the scientific research work on microorganisms has 
been focused on single, isolated strains. Only more recently 
has the focus been moving towards understanding the roles 
of microorganisms in communities and their interactions 
therein. This has been partially fueled by an increasing num-
ber of discoveries about the unique metabolic capabilities of 

microbial communities, including, for example the ability to 
accumulate, metabolize, and degrade various compounds 
such as cellulose (Jiménez et al., 2014), alkanes (Embree et al., 
2013), and even plastic (Carson et al., 2013), or heavy metal 
toxins (Maleke et al., 2014; Zhou et al., 2014). Microbial 
communities research has recently taken hold in the field of 
synthetic biology, as compartmentalization of gene circuits 
into different interacting strains has allowed the develop-
ment of artificial microbial communities with many desired 
properties (Brenner et al., 2008; Shong et al., 2012; De Roy 
et al., 2014). Furthermore, there is a growing awareness of 
the importance of microbial communities in human health 
and disease (Clemente et al., 2012; Relman, 2013; Chen and 
Schnabl, 2014; Ding and Schloss, 2014). For example, the 
composition of the gut community has been shown to have 
an effect on various pathologies (Zupancic et al., 2012; Lazu-
pone et al., 2013; Chen et al., 2014; Gevers et al., 2014) as 
well as physiological traits such as obesity (Faith et al., 2010; 
Ridaura et al., 2013; Walters et al., 2014). Many natural com-
munities feature highly complex interactions among their 
members, with many of them not fully understood. These 
interactions can be highly dynamic, causing roles of the mi-
croorganisms to change within, along with their proportion 
in the population. Systems biology now offers a possibility to 
study these complex community interactions in great detail 
(Zengler and Palsson, 2012). This has been aided by the de-
velopment of various experimental and computational tech-
niques, such as the ability to identify the composition of a 
community through high throughput 16S rRNA gene sequen-
cing (Huse et al., 2008; Caporaso et al., 2010), the ability to 
sequence and elucidate the genomes of individual commu-
nity members through a combination of metagenomics and 
computational binning (Imelfort et al., 2014), and the deter-
mination of gene expression of each community member 
using metatranscriptomics (Embree et al., 2013). Advances in 
genome sequencing and annotations have also led to com-
putational models that allow us to simulate various interac-
tions between microorganisms growing in communities (Klit-
gord and Segre, 2010; Henson and Hanly, 2014). In order 
to better understand the complexities found in natural com-
munities, many studies make use of simple community mo-
dels in order to examine various aspects of community life. 
Even though we are still at a stage where the understanding 
of natural communities is phenomenological, advances in 
computational community modeling have provided a path 
towards shaping and designing communities in a rational 
way. In this review, we first look at the experimental tools 
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Fig. 1. Unraveling microbial interactions. In order to understand large 
scale microbial community interactions, many researchers make use of 
smaller model communities. This allows them to understand specific as-
pects of community living such as the transcriptomic or genomic modifi-
cations that occur during the establishment of interactions, cell-cell com-
munication, various forms of community interactions, as well as other 
physical factors which affect the long term stability of the community such 
as spatial heterogeneity. Various tools have also been developed to study 
communities. These range from macro-scale techniques such as micro-
fluidic devices which can constrain spatial organization of whole commu-
nities, down to individual cell scale such as single-cell approaches which 
allows genome and transcriptome sequencing of individual cells in the 
community.

that have been developed to aid the study of communities. 
We then examine five main areas of current research: 1) es-
tablishment of relationships during the early stages of a mi-
crobial community, 2) cross-strain or cross-species cell-cell 
communication, 3) different types of interactions occurring 
in communities, 4) factors affecting stability of a community, 
and 5) potential industrial applications of microbial com-
munities (Fig. 1). Subsequently, we will discuss the advent 
of computational community models and examine their 
implications.

Approaches

The complexity of most communities necessitates the use of 
various tools for in depth studies. The challenge of working 
with natural communities lies in the large number of spe-
cies and strain variables, which have to be elucidated and 
deciphered. As such, many tools, such as Next-Generation 
Sequencing (NGS), that deal with measuring the abundance 
of different microorganisms present as well as their com-
bined metabolic capabilities have been used (Fig. 1). Before 
sequencing became readily available, community composi-
tion had been determined by cultivation approaches (Zengler, 
2008). Presently, variations in the 16S rRNA gene are used to 
classify microorganisms into operational taxonomic units 
(OTUs) and evaluate OTU abundance and distribution. This 
has been done traditionally through PCR, cloning, and sub-
sequent sequencing or additionally through quantitative PCR 
(qPCR). The recent development of NGS technologies and 

advances in computational biology have led to cost-effective 
generation of large OTU datasets and the development of 
16S rRNA mapping technologies such as QIIME (Caporaso 
et al., 2010). Bulk DNA sequencing and transcriptomics/pro-
teomics followed by gene annotations have also been used 
to give researchers a rough understanding of the metabolic 
capabilities of the community as a whole (Poretsky et al., 
2005; Aliaga Goltsman et al., 2009; Marmeisse et al., 2011), 
while mass spectrometry with or without stable isotope pro-
bing has been used to characterize changes in metabolites 
(Everroad et al., 2012). To unravel the interaction between 
individual members in a community, an understanding of 
the role of individual microorganisms within the community 
was needed. Single-cell DNA sequencing and computational 
based approaches such as GroopM (Imelfort et al., 2014) have 
enabled researchers to tease apart the genome sequences of 
different members within a community. By mapping bulk 
transcriptomic reads back to the sequenced genomes, re-
searchers are now able to pinpoint the metabolic activity of 
individual members within the community (Embree et al., 
2013).
  When working with synthetic communities, researchers 
have the benefit of foresight, and have developed methods 
to distinguish each species prior to co-cultivation. Many re-
searchers have turned to the use of fluorescent reporter pro-
teins due to their ease of use and large number of available 
colors (Heim et al., 1995). The proportion of individual or-
ganisms on solid medium can be easily determined through 
visual inspection and by fluorescence microscopy, or in the 
case of liquid cultures, through the use of fluorescence acti-
vated cell sorting (FACS) (Gore et al., 2009; Wintermute and 
Silver, 2010; Hosoda et al., 2011; Hong et al., 2012; Bernstein 
et al., 2012). Microfluidic devices have also been deployed 
successfully to study the precise spatial organization of com-
munity members and control environmental conditions in 
synthetic communities (Hong et al., 2012).

Establishing intra- and interspecies interactions

How microbial communities establish themselves and how 
interactions are formed and maintained is currently an ac-
tive field of research. An understanding of the genomic or 
transcriptomic changes occurring in microorganisms during 
the onset of interspecies interactions is therefore necessary. 
This becomes especially important for synthetic commun-
ities or the introduction of non-native strains into a pre-exis-
ting community for industrial applications.
  The reaction, interaction, and adaptation of one species to 
another can happen on various levels (Koide et al., 2009). 
These adaptations involve changes at the transcriptional or 
translational level and ultimately are manifested in the ge-
nome. Predicting the level and degree of response is key to 
furthering our understanding of how communities establish 
themselves. Adaptation can occur in one or multiple orga-
nisms at the same time and do not necessarily have to occur 
at the same level. For example, two different Geobacter spe-
cies that had been adapted to grow in a syntrophic co-cul-
ture (Summers et al., 2010) applied different adaptation 
strategies (Nagarajan et al., 2013). While one species changed 
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only expression levels of mRNA, the other species under-
went genome mutations to accompany the most efficient 
growth of the co-culture. These different strategies of adap-
tation occurred very early on in the co-culture and did not 
change even after the culture evolved over 800 generations.
  In others cases, genetic modifications have been shown to 
be essential for survival in limiting growth conditions as they 
allow for the formulation of mutualistic interactions. This was 
demonstrated with a syntrophic co-culture of Desulfovibrio 
vulgaris and Methanococcus maripaludis (Hillesland and 
Stahl, 2010). Desulfovibrio vulgaris ferments lactate to pro-
duce acetate, carbon dioxide, and hydrogen. Due to the low 
energy yield of this reaction, continuous product removal 
is required to drive the reaction and make it thermodynami-
cally feasible. M. maripaludis consumes the hydrogen pro-
duced by D. vulgaris which facilitates the growth of D. vul-
garis; thus forming a mutualistic relationship. Of the 24 co- 
cultures originally set up by the authors, four were unable to 
adapt to this syntrophy and collapsed while the growth rates 
of the remaining 20 co-cultures fluctuated stochastically and 
erratically during the initial adaptation phase before even-
tually stabilizing. This could suggest that at least some of the 
changes responsible and essential for adaptation to syntro-
phic interaction of the co-culture were genetic in nature.
  Community collapse due to a lack of sufficient genetic modi-
fication was also observed in a study by Shou et al. (2007) 
who established a symbiotic relationship between two gene-
tically modified Saccharomyces cerevisiae strains containing 
different amino acid auxotrophies. One strain was auxotro-
phic for adenine while the other was auxotrophic for lysine. 
Initial co-cultures were unable to establish a viable mutua-
listic relationship and quickly died. In order to induce coo-
peration, additional genetic mutations had to be made in 
each strain in order to remove feedback inhibition and force 
overproduction of its partner’s corresponding rescue meta-
bolite. Thus, the presence of diverse subpopulations of vari-
ous genetic mutants within a single species may be essen-
tial for the adaptation of this co-culture and survival of the 
species. Recently, large communities of coexisting subpopu-
lations of the marine cyanobacterium Prochlorococcus have 
been described, suggesting that the stable niche partitioning 
of species is a dominant factor in nature as well (Kashtan et 
al., 2014).
  Under optimal conditions, a few individuals of the S. cer-
evisiae study with scattered genetic mutations may exhibit 
cooperative behavior at the expense of a slightly decreased 
growth rate and are maintained at low proportions in the 
population. However, when forced into co-culture, coopera-
tion results in an increased fitness of these individuals, caus-
ing them to proliferate and dominate the population.
  While major genetic changes might be necessary for the 
formation of some community interactions, studies have 
shown that interactions can also be established solely by 
changes of the transcriptome. Hosoda et al. (2011) created 
a simple co-culture using Escherichia coli instead of S. cer-
evisiae, and found that co-cultures of two auxotrophic strains 
(leucine (L-) and isoleucine (I-)) were stable without addi-
tional genetic modifications required to force each strain to 
secrete the metabolites required for the symbiotic relation-
ship to exist (Hosoda et al., 2011). In addition, the exchange 

of metabolites occurred within ten hours after inoculation. 
The authors reasoned that this was an insufficient time for 
large scale genetic mutations to occur. This implied that tran-
scriptomic changes were sufficient to cause the overproduc-
tion and transfer of nutrients between each other and sup-
port the relationship. In a follow up paper, Hosoda and Yomo 
(2014) discussed how the cells managed to communicate 
their respective metabolic requirements to their partners. As 
the cells had managed to establish the symbiotic relationship 
even when grown without physical contact, this communi-
cation had to have occurred through the exchange of small 
molecules via the medium. The authors concluded that gene 
knockouts used to generate the auxotrophies caused path-
way jams and a buildup of the metabolic precursors upstream 
of each required amino acid. The authors speculated that 
these precursors, such as alpha-keto-beta-methylvalerate used 
in the production of isoleucine, leaked out of the I- cells and 
could be taken up by the L- cells. The L- cells would sub-
sequently overproduce the required metabolite in order to 
reduce feedback inhibition in upstream pathways and at a 
lower than expected metabolic cost.
  In another example, Kihara et al. (2009) investigated the 
development of a symbiotic relationship between E. coli 
and the cellular slime mold Dictyostelium discoideum. They 
found that the transcriptomic changes in E. coli during the 
development of the symbiotic relationship were similar to 
those that occurred in response to the development of bio-
films. This suggests that this particular symbiosis resulted 
from the repurposing of pre-existing genetic circuits and 
pathways in E. coli, triggered by environmental conditions 
similar to those encountered during biofilm development.
  These experiments have provided evidence of both geno-
mic and transcriptomic changes taking place during the es-
tablishment of different co-cultures. However, no clear rules 
have yet been derived and further investigation is needed 
before we can predict what changes will be beneficial for 
establishing stable co-cultures.

Communication between interacting partners

The establishment, maintenance, and optimization of co-cul-
tures as well as complex communities rely on communica-
tion between the different species. This communication is 
necessary not only to establish community interactions in 
the first place but also for the stability and progression of the 
community. While cells can communicate directly through 
the exchange of metabolites, it is more common for them to 
communicate through the use of quorum sensing. Quorum 
sensing occurs when cells release a small molecule signal 
whose activity is concentration dependent. This couples the 
activity of the small molecule signal to the number of cells 
per space, allowing cells to regulate their activity based on 
their density as well as coordinate responses to increase its 
effectiveness (Fuqua et al., 1994; Swift et al., 1996).
  The ability to understand the role of quorum sensing is 
important when studying natural communities. For exam-
ple, Pseudomonas aeruginosa uses quorum sensing for co-
operative behavior as well as coordinating virulence. Hence, 
disrupting quorum sensing using drugs such as azrithro-



298 Tan et al.

mycin seems like a logical intervention for halting virulence. 
However, Köhler et al. (2010) realized that natural popula-
tions of P. aeruginosa are composed of cooperators (wild-
type) and non-virulent cheaters (lasR mutants). In natural 
populations, cheaters experience a fitness advantage over the 
wildtype, but disruption of quorum sensing by azrithro-
mycin results in a loss of this fitness advantage. While azri-
thromycin does prevent virulence of P. aeruginosa during 
the course of the treatment, it also enriches the populations 
of P. aeruginosa within the patient for the more virulent 
wildtype strain. Following the discontinuation of azrithro-
mycin treatment, patients unfortunately experience an in-
creased susceptibility to P. aeruginosa infections. Knowledge 
of different subpopulations of the same species is thus cru-
cial for predicting treatment outcome.
  Several groups make use of synthetic communities built 
around quorum sensing circuits. By introducing two dif-
ferent gene circuits into E. coli, Basu et al. (2004) were able 
to make one strain a sender and one a receiver. The receiver 
cells contained a feed-forward loop motif gene circuit such 
that the production of the inducer signal by the sender cells 
would result in a transient pulse of green fluorescent pro-
tein (GFP). More interestingly, due to the dynamics of the 
feed-forward loop motif, the receiver cells exhibited spatio-
temporal behavior, responding only to nearby sender cells, 
ignoring distant sender cells. Thus, spatial distributions, as 
discussed below, have been shown to be a key factor in 
communities.
  In a follow-up study, the authors were able to tweak the re-
ceiver circuit, to express GFP at only intermediate levels of 
the inducer molecule from the sender, while repressing it 
at both low and high levels (Basu et al., 2005). When sender 
cells were inoculated on a lawn of receiver cells, the concen-
tration gradient of inducer signal diffusing from the sender 
resulted in a ring of fluorescence at the optimal concent-
ration. As we allude to later in the chapter, spatial distri-
bution is a critical factor for the survival and function of 
many communities. By integrating quorum sensing and gene 
circuits, experiments have managed to recapitulate that phe-
nomenon. Quorum sensing serves as an important way for 
cells to communicate and coordinate behavior, and a deeper 
understanding of its application in complex communities 
will lead to ways to maintain, control, and manipulate com-
munities.

Community interactions

By undergoing different adaptations, cells achieve various 
forms of interactions that can maximize their chances for 
survival. In natural communities, microbes interact in a 
multitude of ways, from the transfer of metabolites to the 
inhibition of growth through the production of antibiotics. 
These interactions have either a positive or negative effect 
on each of its members. In a natural community composed 
of several species, some or all of these interactions could 
occur concurrently between different members of the com-
munity, leading to increasing complexity as the number of 
species (and subpopulations) grows. Many of these inter-
actions, such as parasitism, competition, and mutualism, 

have been studied previously. The development of synthetic 
communities and simplified models has recently been used 
to gain insight into the form of interactions.
  A form of interaction where one species derives a benefit 
at the expense of the other is known as parasitism or pre-
dation. In order to model a predator-prey system, Balagaddé 
et al. (2008) generated two strains of E. coli that communi-
cated via two orthogonal cell-cell communication pathways, 
LuxI/LuxR and LasI/LasR. The predators induced the ex-
pression of the suicide protein ccdB in the prey, resulting 
in their death. On the other hand, predator cells constituti-
vely produced ccdB protein, requiring the signal from prey 
cells to induce expression of the antidote protein ccdA. By 
co-culturing these different strains together, the authors 
were able to model various ecosystem dynamics such as co-
existence and extinction. Furthermore, sustained oscillation 
could be studied by changing parameters, such as the dilu-
tion rate of the chemostat.
  An example of parasitism can be found in the context of 
cheaters and cooperators within a population. Members of 
a species exhibit cooperativity to produce a public good, 
such as the production of invertase by yeast which aids in 
the conversion of sucrose to glucose. This behavior can be 
exploited by other members in the community that do not 
contribute to the production of this public good, but still 
benefit from its presence. Invertase is expressed in the peri-
plasmic space in S. cerevisiae, and despite the metabolic costs 
associated with expressing it, around 99% of the sucrose 
converted to glucose is lost to the surrounding environment 
(Celiker and Gore, 2012). This leads to the mutual presence 
of cooperators and cheaters within many natural populations 
of yeasts. Gore et al. (2009) further explored the dynamics 
of cheaters and cooperators in natural populations by cre-
ating a histidine auxotrophic cooperator strain that produced 
invertase. They then co-cultured it with a cheater strain that 
did not produce invertase, making use of histidine levels as 
a method to control cooperator levels. They found that the 
strains engaged in what they termed as snowdrift game dy-
namics, where rare strategies did comparatively better than 
the common strategy. In wild-type yeasts, however, invertase 
expression is regulated by the level of glucose, allowing them 
to have the optimal strategy for success in the snowdrift 
game. When wildtype yeasts are co-cultured with cheaters, 
low glucose concentration causes expression of invertase and 
thus an increased fitness relative to the cheaters. On the 
other hand, co-culturing wildtype yeast with cooperators re-
sults in repression of invertase expression due to high glucose 
concentration, again increasing fitness relative to the sur-
rounding cells.
  Celiker and Gore (2012) also found that cross-species com-
petition selected for cooperative behavior. In the absence 
of competition and under normal conditions, cooperation 
results in a high glucose concentration in the environment. 
Cheaters thus proliferate in the population due to an in-
creased fitness derived from the absence of metabolic costs 
associated with expression of invertase. However, when E. 
coli is added to the community, it quickly consumes all avail-
able glucose, causing cooperating yeast cells to proliferate 
because they now benefit from a marginal fitness advantage 
over cheater cells due to locally increased concentrations of 
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glucose.
  One species deriving a benefit from the other without any 
positive or negative effect on the other organism is known 
as commensalism. This often occurs when a metabolic by-
product of one species is taken up by the other as a nutrient 
source. While true commensalism might play a role in natu-
ral communities, it is more likely that both species are affected 
by the interaction. Thus, several studies have looked at one- 
way crossfeeding mutualism, a situation similar to commen-
salism where the byproduct of one organism serves as the 
nutrient source of the other, but where the uptake of the 
byproduct has a positive effect on the organism producing 
it due to product toxicity or low reaction energetics. For 
example, E. coli cells grown aerobically on glucose build up 
acetate, causing feedback inhibition and inhibiting culture 
yield. Bernstein et al. (2012) combined two strains of E. coli, 
one that could break down glucose into acetate (producer), 
and another that was unable to break down glucose but 
could feed on acetate from the producer. This co-culture 
exhibited increased biomass productivity over cultures of 
either strain. In addition, the authors were able to show even 
higher biomass productivity when they genetically modi-
fied the producer strain to streamline production of acetate, 
showing the importance of this interaction to the combined 
growth rate and yield of the community. Several other fac-
tors also affect the strength of the one-way crossfeeding 
mutualism. By creating a mathematical model of a producer 
and the cross-feeder, Estrela et al. (2012) showed that the 
crossfeeding mutualism is favored by an increase in toxicity 
and stability of the by-product, both of which serve to in-
crease the importance of the cross-feeder. They also found 
that mutualistic interaction peaked at intermediate toxicities 
because at high toxicity, the producer levels were strongly 
inhibited by by-product formation.
  Co-cultures have been used to simulate interactions such 
as parasitism, competition, or mutualism. However, natural 
communities are often very complex and can contain mul-
tiple members engaging in different interactions with dif-
ferent members of the community at different times. Eluci-
dating different forms of interactions and their underlying 
mechanisms is therefore paramount when we begin to de-
cipher the many intertwined layers of interactions found in 
natural communities.

Physical factors and long-term community sta-
bility

Not only are intracellular, intercellular, and interspecies in-
teractions important for the long term stability and surviv-
al of a community, but physical factors such as spatial or-
ganization also determine its survival and function.

Spatial organization
One of the most important factors for the establishment 
and stability of a community is the spatial organization of its 
members. Communities in nature often achieve and main-
tain a defined spatial structure. This can be mimicked in the 
laboratory by growth on solid substrates or through the es-
tablishment of biofilms which constrain cellular movement. 

Many synthetic communities have been developed to look 
into the effects of spatial organization on community tra-
jectory and steady state. Kerr et al. (2002) demonstrated this 
using three strains of E. coli, a colicinogenic strain (C), a 
colicin resistant strain (R), and a colicin sensitive strain (S), 
which is killed by the C strain . Colicin is a highly effective 
class of bacterial toxins, which can be produced by some 
strains of E. coli and are toxic to others. Production of coli-
cin carries an inherent metabolic cost, while resistance to 
colicin involves repression of specific outer membrane re-
ceptors which the toxin target, forfeiting the ability to sense 
or uptake key nutrients. Both the production and the re-
sistance results in a decreased growth rate relative to the 
wild type, with colicin production having a larger metabolic 
burden than resistance. This system mimicked the game of 
rock-paper-scissors, where R was outcompeted by S, S was 
killed by C, and C was correspondingly outcompeted by R. 
When grown in a well-mixed environment, C quickly caused 
the extinction of S, and was then gradually outcompeted by 
R. On the other hand, when grown on a plate which provided 
a heterogenous environment where only local interactions 
occurred, all three strains were able to survive, and continu-
ously exhibited an effect which the authors termed ‘chasing’. 
This was due to colonies on the plate invading other colonies 
to which they were vulnerable, but at the same time being 
invaded by other colonies to which it was vulnerable.
  Kim et al. (2008) also looked at the effects of spatial struc-
ture using three different species of bacteria: Azotobacter 
vinelandii, Bacillus licheniformis, and Paenibacillus curdla-
nolyticus. In this community, each species performs a vital 
role. A. vinelandii fixes nitrogen into amino acids under aero-
bic conditions, while P. curdlanolyticus excretes cellulases 
which cleave carboxymethyl cellulase, the only carbon source 
available to the community, to produce glucose. Lastly, B. 
licheniformis is necessary for reducing antibiotic pressure 
by degrading penicillin G. The authors found that in a well- 
mixed environment such as liquid media, regardless of nu-
trient availability or antibiotic levels, the culture was unstable 
resulting in the extinction in at least 2 of 3 community mem-
bers. However, when the community was cultured in a micro-
fluidic device in order to spatially localize the species, they 
were able to form a stable community. Additionally, the use 
of a microfluidic device allowed them to view the effects of 
distance on the dynamics of the system. They found that 
decreasing the separation of the species, which mimics a well- 
mixed environment, or increasing the separation of just one 
of the species result in an overall decline in population size.
  The effect of spatial structure on the community is not 
merely unidirectional, and several communities have been 
shown to exhibit self-organizing capabilities. While creating 
a community consisting of wildtype E. coli and a knockout 
mutant which made use of acetate, Bernstein et al., noted 
that when the wildtype E. coli was genetically modified to 
enhance acetate production, the community exhibited an 
emergent property of self-organizing into a laminated bio-
film, where the acetate consuming strain localized itself at 
the biofilm air interface (Bernstein et al., 2012). While the 
acetate producer could respire anaerobically, and in fact 
probably did so in order to increase acetate yield, the ace-
tate-consuming strain required oxygen for energy produc-
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tion. The formation of a laminated biofilm allowed for the 
best division of labor.
  In addition to organization for access to oxygen and various 
nutrients, some communities have also been shown to self- 
organize in order to maximize positive and minimize nega-
tive interactions. Momeni et al., made use of three geneti-
cally modified yeast strains, one of which was lysine auxo-
trophic but supplied alanine (R), another was alanine auxo-
trophic but supplied lysine (G), and the last was lysine auxo-
trophic but unable to supply alanine (C) (Momeni et al., 
2013). R and G alone were able to form a mutualistic rela-
tionship, but C was a cheater that was able to survive in the 
presence of G, but alone would be unable to sustain the rela-
tionship. When the environment was well-mixed, the main 
competition was between C and R as both made use of G 
for lysine production. The steady state community propor-
tions were dependent on which strain had a better com-
petitive adaptation for the uptake of lysine, and could result 
in either C or R dominating the culture. However, when the 
culture was grown on a plate and hence was spatially con-
strained, the cooperation between R and G allowed them to 
self-organize to exclude cheaters from colonies. This was 
due to the fitness advantage that cooperators in very close 
proximity attained over the rest of the cells, a phenomenon 
termed partner fidelity feedback. This phenomenon results 
in colonies made out of just cooperating partners to grow 
much faster and at the expense of any other colonies which 
contained cheaters.
  Spatial organization in natural communities is often achieved 
through the formation of biofilms. These allow for efficient 
division of labor and spatial separation of strains. It stands to 
reason that in order to introduce synthetic communities into 
nature or to influence existing natural communities, the abi-
lity to form, maintain, and control biofilms will be crucial. 
Hong et al. (2012) developed a genetic circuit which they 
could introduce into cells in order to control formation and 
dispersal of biofilms. Initial colonizer cells would create a 
biofilm within a microfluidic device, which could then be 
quickly invaded by a second cell type, called disperser cells, to 
form a dual-species community. These disperser cells could 
then be induced by a chemical signal to completely displace 
the initial colonizer cells, and at a second chemical signal, 
to disperse the biofilm.

Cell densities
In addition to spatial organization, the seeding proportions 
of different members of the community are also important 
for determining the trajectory and viability of the commu-
nity. In an attempt to construct a binary interaction between 
two yeast strains with different amino acid auxotrophies, 
Shou et al. (2007) made use of metabolomics to determine 
the amino acid release dynamics of each strain of yeast. They 
noticed that one strain only secreted the amino acid essen-
tial for the growth of its partner strain shortly prior to cell 
death. This delay in release meant that a specific range of 
initial seeding densities of the two strains was essential for 
the community to be viable. This was a result recapitulated by 
Hu et al. (2010) using a co-culture consisting of two strains 
of E. coli which were each innately resistant to either kana-
mycin or ampicillin and conditionally resistant to the other 

antibiotic depending on a quorum sensing signal produced 
by its partner.
  Similar to the bidirectionality of spatial organization and 
community viability, final population composition and den-
sities are also affected by the community. Hu et al. (2010) 
made an interesting observation that the final strain pro-
portions and community densities were consistent, regard-
less of inoculation proportions and densities. As population 
proportions are in turn linked to a community’s metabolic 
capabilities, the ability to accurately control the proportion 
of community members will allow us to control the com-
munity’s metabolic capabilities. This control will be highly 
beneficial when attempting to manipulate existing natural 
communities or perform a complex function using synthetic 
co-cultures and communities. Kerner et al. (2012) developed 
a synthetic co-culture which consisted of a tryptophan auxo-
trophic and a tyrosine auxotrophic E. coli strain. Each strain 
had additional genetic modifications under control of in-
ducible promoters, which strengthened the mutualistic rela-
tionship; a yddG gene in the tryptophan auxotroph increased 
export of tyrosine, and overexpression of trpEDfbr in the 
tyrosine auxotroph increased tryptophan biosynthesis. By 
controlling the amount of induction and thus the strength 
of the mutualism, the authors were able to tune growth rate 
and population ratios within the consortium.

Microbial co-cultures and communities for indu-
strial application

Since microbial communities play a role in many parts of our 
lives, the ultimate goal is to rationally design and control 
co-cultures and communities for various medical, indust-
rial, and environmental applications. Even without an in 
depth knowledge of individual community members, the 
form of interactions they are engaged in, or a mechanistic 
understanding of their interactions, microbial communities 
have been deployed for centuries in food production (Ercolini 
et al., 2003; Kim and Chun, 2005) or wastewater treatment 
(Lay-Son and Drakides, 2008; Morgan-Sagastume et al., 2008). 
However, the use of systems approaches and the develop-
ment of new technologies for community microbiology has 
greatly accelerated knowledge about these communities and 
opened new avenues for rational interrogation and process 
improvement.
  Microbial communities have been deployed for several in-
dustrial uses. They have been widely used for the produc-
tion of biofuels from lignocellulosic material in both a one- 
step (Minty et al., 2013) or two-step process (Eiteman et al., 
2008; Lin et al., 2011). They have also been used for bio-
mining (Dopson and Lindstrom, 1999) and bioremediation 
(Canstein and Kelly, 2002) and have been shown to be bene-
ficial for the production of natural products such as vitamin 
C precursor 2-KGA (Ma et al., 2011, 2014; Du et al., 2013; 
Ding et al., 2014), and might even prove to be an indis-
pensable method in the process of natural product discovery 
(Schroeckh et al., 2009; Nützmann et al., 2011; Ola et al., 
2013).
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Fig. 2. Predictive and rational design of communities. Computational 
modeling of an organism starts with the creation of a draft reconstruc-
tion, manual refinement, conversion from reconstruction to mathematical
model (GEM), and model evaluation through validation by experimental 
data. Various extensions to the traditional FBA method have been developed 
for use with communities. These have been used to predict possible com-
munity interactions and guide community optimization. Data from both 
natural communities and model communities has been used to better 
understand community structure, metabolic capabilities, and activity.

Community modeling

Most detailed studies related to community interactions have 
been performed using artificial co-cultures. The transition to 
rational design and manipulation of more diverse commu-
nities has so far proven to be out of reach due to the sheer 
complexity of interactions within many natural communi-
ties. On the other hand, computers have proven to be highly 
adept at keeping track of vast numbers of parameters and 
interactions, performing millions of calculations per second. 
The use of computational models has transformed many fields 
(Buizza et al., 1993; Ferziger et al., 1997); they provide the 
only realistic means of calculating and predicting these com-
plex phenomena. Computational models will likely prove in-
valuable to the continued pursuit of research on microbial 
communities.
  From a theoretical perspective, classical ordinary differential 
equation (ODE) models have been shown to recapitulate 
interactions such as mutualism, commensalism, neutralism, 
and predator-prey relationships. For example, modeling the 
stability of plasmids in recombinant microorganisms, com-
petition between two microorganisms for an inhibitory sub-
strate in a biofilm, or the colony diameter and height as func-
tion of time have been successfully investigated (Dunn et 
al., 2003; MacLean and Gudelj, 2006; Gudelj et al., 2010). 
However, these approaches typically assume simple inter-
species interaction rules, and also require knowledge of hun-
dreds of differential equations and kinetic parameters typi-
cal of classical kinetic models.
  New developments on the reconstruction of community 
networks have paved the way towards a model of ecosystem 

dynamics (Fig. 2). Recently, constraint-based modeling has 
become a powerful tool for interrogating biological networks. 
Constraint-based modeling approaches using genome-scale 
metabolic networks have provided significant mechanistic 
insights into the genotype-phenotype relationship and mic-
robial physiology of single bacterial species (Edwards et al., 
2002; Schellenberger et al., 2011). The main method of con-
straint-based modeling, flux balance analysis (FBA), ana-
lyzes network capabilities under a steady-state assumption. 
FBA is based on linear optimization of an objective func-
tion, which often is biomass formation (Schellenberger et al., 
2011). Different resources for metabolic reconstructions and 
software tools have been developed. Additionally, there are 
many databases, software tools, and solvers for FBA avail-
able (Raman and Chandra, 2009). The use of systems biology 
has allowed complex community interactions to be described 
using metabolic models, and models are now able to predict 
the outcome of community alterations and the effects of 
perturbations.
  One of the earliest attempts at extending the constraint- 
based modeling approach to microbial communities was 
made by Vallino in 2003 using thermodynamic constraints. 
This simple model consisted of just twelve lumped reactions, 
each accounting for the community-wide contribution to 
processes such as nitrogen source uptake, CO2-fixation, and 
biomass synthesis, yet achieved relative success in simulat-
ing a marine phytoplankton bloom (Vallino, 2003).
  Stolyar et al. (2007) went on to expand community models 
to the genome-scale, investigating the mutualistic interaction 
between the sulfate-reducing Desulfovibrio vulgaris and the 
methanogenic Methanococcus maripaludis. The predicted 
metabolite fluxes showed high concordance with experimental 
data, confirming the viability of computational modeling for 
microbial communities. However, because constraint-based 
modeling at the time could only account for a single objective 
function, the authors considered the species as interdepen-
dent, and represented the objective function as the maxi-
mization of the sum of each species’ biomass production 
fluxes, weighted by the experimentally observed population 
ratios. This limitation was later rectified by OptCom, an al-
gorithm, which allowed the optimization of multiple objec-
tive functions (Zomorrodi and Maranas, 2012). Nagarajan 
et al. (2013) applied this algorithm for the modeling of di-
rect interspecies electron transfer (DIET) between Geobacter 
metallireducens and Geobacter sulfurreducens.
  Extensions were also made to FBA. One widely used exten-
sion has been the development of dynamic FBA. This algo-
rithm was first implemented for a single E. coli strain model 
by Mahadevan et al. in 2002. Zhuang et al. (2011) imple-
mented dynamic FBA into the Dynamic Multi-species Meta-
bolic Modeling (DyMMM) framework. By solving the FBA 
problems representing each organism separately, the authors 
were able to model batch-growth of the community more ac-
curately, as well as recapitulate competition and cross-feed-
ing interactions. A similar approach has now been utilized 
for the modeling of industrially relevant processes, such as 
ethanol production by microbial communities growing on 
single sugars (Hanly and Henson 2011; Hanly et al., 2012) 
as well as mixed substrates (Hanly and Henson, 2013). Even 
more recently, by incorporating diffusion via a finite diffe-
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rence approximation, Harcome et al. (2014) have added an 
extra dimension to this method. This allows the model to re-
capitulate spatial effects which have repeatedly been shown 
to be important in community structure, leading to the pre-
diction of both spatial and temporal changes in two and 
three-membered communities.
  Recently, progress has been made towards predictive mo-
deling of microbial communities. Tzamali et al. (2009) used 
a network-based method for simulating a long-term evolu-
tion experiment of E. coli strains grown on ten different car-
bon sources. By setting rules which allow interactions to form 
only between strains with different metabolic capabilities, 
the authors determined the diversity that would theoretically 
emerge from a population of single gene deletion mutants of 
E. coli.
  In 2010, Klitgord and Segre further expanded the predic-
tive capabilities to pairwise combinations of different model 
organisms. The authors studied combinations of seven bac-
terial species: E. coli, Helicobacter pylori, Salmonella typhi-
murium, Bacillus subtilis, Shewanella oneidensis, Methylo-
bacterium extorquens, and Methanosarcina barkeri. Based 
on a set of metabolites essential for growth of two microorga-
nisms, the authors developed an algorithm which identified 
an interaction-induction minimum medium. The medium is 
designed to sustain the growth of a pair of organisms, but not 
either of the two individually. Using this medium allows 
researchers to design experiments for the study of commen-
salism or mutualism in the pairwise combinations.

Future directions and conclusions

While a multitude of experimental tools now exist to study 
bacterial communities, the complexity and vast number of 
factors involved in even simple communities necessitate the 
construction and use of computational models for rational 
design or prediction of community trajectories.
  Mathematical and computational models based on ordinary 
differential equations (ODEs) have long been used in the 
modeling of ecological phenomena (McCook, 1994), but they 
suffer from limitations such as the need for kinetic para-
meters. The advent of constraint-based modeling circum-
vents many of these limitations for community modeling - 
making detailed insights into microbial communities and 
predicting their responses to perturbations a reality. Many 
new methods and algorithms have been developed ever since 
the first genome-scale model of an artificial two-member 
co-culture was described in 2007 (Stolyar et al., 2007).
  Although great progress has been made over the last few 
years, certain limitations still exist that hinder the widesp-
read use of computational models for microbiology research. 
Community modeling efforts rely on reconstructions for 
single microorganisms. Out of over 30,000 sequenced ar-
chaeal, bacterial, and eukaryotic genomes available (NCBI 
Reference Sequence Database), only 78 curated genome-scale 
models have been reconstructed (NCBI, 2014; Bordbar et 
al., 2014). The availability of high quality reconstructions 
currently represents the main bottleneck in the process of 
community modeling. Furthermore, population diversity dic-
tates manual curation of existing models to match different 

realities (Monk et al., 2013; Kashtan et al., 2014). Automatic 
reconstruction tools, such as ModelSEED (Overbeek et al., 
2005) have become available to aid the genome-scale recon-
struction process; however, these tools still require extensive 
manual curation to improve accuracy. These tools will im-
prove over time when more highly curated models become 
available, in particular of microorganisms containing unique 
metabolic capabilities. One could argue that current meta-
bolic models provide only a partial representation of the vast 
metabolic diversity present in different microorganisms. The 
fact that the majority of microorganisms are so far not cul-
turable (Zengler, 2009) and their metabolic capabilities are 
therefore difficult to elucidate, further stymies the develop-
ment of true environmental community modeling. Further-
more, we are still lacking knowledge about gene functions, 
even in model organisms. For example, around 30% (1,336) 
of the genes in E. coli, arguably the best studied microorga-
nism, are considered y-genes of unknown function. Many 
of the organisms sequenced in natural habitats (e.g., by meta-
genomics) have poor homology to their cultivated counter-
parts, potentially resulting in altered metabolic capabilities 
(Tettelin et al., 2005). Genome-scale reconstructions can be 
hampered by an insufficient breadth of biochemical data. 
This is especially true for lesser-studied microorganisms 
with poorly understood biochemistry. A concerted effort of 
both experimental and computational approaches could 
provide this knowledge and would undoubtedly lead to a 
plethora of discoveries.
  Recent advances in experimentally derived genome anno-
tations have resulted in reconstructions with broader scope 
(Cho et al., 2009; Qiu et al., 2010; Latif et al., 2013). These 
next generation reconstructions integrating both metabo-
lism and expression (transcription and translation) have led 
to an improved mechanistic understanding of transcription, 
translation, and protein modification machinery (O’Brien 
et al., 2013). The development of eukaryotic genome-scale 
models such as RECON1 (Duarte et al., 2007) has also 
spawned models for eukaryote-prokaryote interaction. These 
models were deployed to simulate pathogenicity (human 
cell/Mycobacterium tuberculosis) (Bordbar et al., 2010), in-
teractions between host (mouse) and a gut bacterium (Bac-
teroides thetaiotaomicron) (Heinken et al., 2013), as well as 
the bulk metabolic capabilities of both host and gut micro-
biome (Sridharan et al., 2014).
  Substantial progress has been made towards predictive 
modeling of microbial communities as well as host/microbe 
interactions. The potential applications of these models are 
as diverse as the microbial niches on the planet, spanning 
from industrial settings to the natural environment. Recently, 
the human microbiome has become of particular interest. 
Understanding the complex relationship of bacteria and fungi 
with the human body and their role in health and disease 
could ultimately lead to tailored interventions and new 
kinds of pharmaceuticals. We envision that predictive mo-
deling of host/microbe interaction and insight into the in-
tertwined relationship will play a major role in the rational 
design of microbes and drugs to improve human life.
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